
Introduction How it works Using it well PBT + other methods

Property-based Testing: Getting Computers to
Test Your Code For You

Tunan Shi

CompSci Student Talks, Churchill College, Cambridge

17 November 2021

Property-based Testing 1 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Software safety

▶ You want your code to behave the way that you expect it to
▶ Especially for safety-critical systems

▶ Medical life-support systems
▶ Control systems for nuclear reactors
▶ Command and control systems in spacecraft
▶ Automated trading programs

Property-based Testing 2 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Example

Figure: Wikimedia Commons

Property-based Testing 3 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Methods for software safety

▶ Using a language with a type system designed for safety
▶ Formal verification
▶ Testing ← our focus

We will get back to the first two later!

Property-based Testing 4 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Review of unit (example-based) testing

▶ Writing examples of inputs and expected output to test each
function you write

▶ Small → very easy to debug
▶ Easily tell when your code doesn’t output the correct answer
▶ System complexity → much more time consuming to write
▶ Easy to miss failing cases from human error
▶ Kind of boring and brainless a lot of the time

Property-based Testing 5 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Generative (random) testing

▶ Throw large, random cases at our code?

The Oracle Problem
Even if we can generate large, high quality test cases, how would
we be able to tell if the code’s output was correct?
We introduce property-based testing as a testing method which
combines the best of both worlds.

Property-based Testing 6 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Programming language for the talk

▶ Most talks and articles on property-based testing use some
sort of FP language (including the original paper [1], which
used Haskell)

▶ This testing method not exclusive to FP
▶ Implementations available in a lot of languages (Haskell,

Erlang, OCaml, Python, F#, C++, Prolog, Java etc.)
▶ We will use Python 3 with the hypothesis library

Property-based Testing 7 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

What is a property-based test?
Each test is meant to programmatically check if a function behaves
in a certain way.
Example
def my_reverse(xs):

My implementation...
A property: For every possible list of integers xs, reversing a list
twice will always give back the original list.
from hypothesis import given, strategies as st

@given(st.lists(st.integers()))
def test_reversing_twice_gives_same_list(xs):

assert xs == my_reverse(my_reverse(xs))

Property-based Testing 8 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Let the testing begin

▶ hypothesis will begin generating lists of integers to test
▶ hypothesis marks the test as passed after a lot (e.g. 100) of

passed tests
▶ What if a test case is found that breaks the property?
▶ Give it back to the developer, right?

Property-based Testing 9 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Let the testing begin

Falsifying example:
test_reversing_twice_gives_same_list(

xs=[929, -31594, -30016, 22329, 6252,
2677217053071645725, -20903, 58, -36,
-16, 5699505368379265500],

)
Traceback (most recent call last):
File "pbt.py", line 12, in [...]

assert xs == my_reverse(my_reverse(xs))
AssertionError

Property-based Testing 10 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Dealing with large unwieldy cases
▶ Generate only smaller cases instead?

▶ But larger cases are more likely to detect bugs in code...

Observation

Unnecessary fluff

Actually causes bug

Property-based Testing 11 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Shrinking our test case

1. Generate alternate (smaller) test cases
2. Run each alternate case against the original function to check

if it fails
3. As soon as one fails, use it to generate even smaller alternate

cases
4. If none of the alternate cases fail, stop

Like a “greedy hill climbing” algorithm

Property-based Testing 12 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Shrinking our test case

[42, 1, 28980, 31415926, 1561601, · · ·]

[] [42] [42, 1]

[] [42] [1] [0, 1]

[] [0] [1] [0, 0]
Shrunk counterexample: [0, 1]

Property-based Testing 13 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Shrinking our test case

Let’s use it on our Python code...
Falsifying example:
test_reversing_twice_gives_same_list(

xs=[0, 0, 1],
)
Traceback (most recent call last):
File "pbt.py", line 12, in [...]

assert xs == my_reverse(my_reverse(xs))
AssertionError

Property-based Testing 14 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Debugging

So, what was my buggy implementation?
def my_reverse(xs):

if len(xs) == 0:
return []

result = xs[1:] + xs[:1]
return result

Property-based Testing 15 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

How shrinking works

▶ Shrinking is automatically implemented by libraries for most
common types

▶ Getting to know the underlying algorithm will help guide your
decisions on how best to use PBT

▶ So, how does one generate counterexamples?

Property-based Testing 16 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Shrinking an integer
▶ What’s the simplest example of an integer you can think of?
▶ Given two integers, how should we determine if one is simpler

than the other?

Possible algorithm
Suppose the integer to shrink is n. Then, try:
▶ 0
▶ ⌊n

2
⌋

▶ If n < 0, then
▶ |n|
▶ n + 1

▶ If n > 0, then n− 1

Property-based Testing 17 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Other shrinking examples
Example: List of integers

1. Try the empty list
2. Take one half of the list
3. Remove a random element of the list
4. Shrink one of the integers of the list

Example: Binary search tree
1. Only the root node
2. Only the left/right subtree
3. Remove any one of the descendant subtrees
4. Shrink any one of the elements

Property-based Testing 18 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Alternatives to greedy shrinking

Clearly, the “greedy hill-climb” algorithm can be improved
Improvements
▶ Generate a few large failing cases before shrinking them in

parallel
▶ Once unshrinkable, generate failing cases around same size

and try shrink those instead
▶ Small amounts of backtracking to see if you can find a better

shrink
In most cases, the simple greedy hill-climb will give you a
counterexample small enough to work with.

Property-based Testing 19 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

How not to generate test cases

Example
Generating random lists of (key, value) updates to test your
dictionary:

[('\x1cæÙ\U0003cba9\x859nôÔ', '¹'),
('\U0010c79fD¬+Ø Z\x0b', '³\x00øÚûJ5\U000d4ee4oªq'),
('', ':\x9e=\U0005fa13\x9c'),
('\x12»pb\U000351e9È\U00102e28\x82', ''),
('Ñ\x8e}*', '&£'),
('\U000c33e7\x02Üä\U0005627c\U000de36f', 'AS')]

What can we see?

Property-based Testing 20 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Writing better generators

How do we give the dictionary a suitable number of key-value
collisions?
Possible strategy
Create a random list of at least 5 strings and then for all of our key
queries, pick only from the list of strings

Property-based Testing 21 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Writing the generator

@st.composite
def gen_tests_for_dict(draw):

key_strategy = st.lists(st.text())
keys = draw(key_strategy)
assume(len(keys) >= 5)
return draw(st.lists(

st.tuples(st.sampled_from(keys), st.text())
))

Property-based Testing 22 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

How do I write good properties?

It is hard to come up with good properties to test your code
def test_reversing_twice_gives_same_list(xs):

assert xs == my_reverse(my_reverse(xs))
Counterexample?
def my_reverse(xs):

return xs
Summed up by John Hughes [3], there are several design patterns
for writing properties

Property-based Testing 23 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Invariant (sanity) checks

▶ When testing data structures, check that your data structure
is well-formed

▶ Easy entry-level check that indicates catastrophic failure if
broken

Property-based Testing 24 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Invariant check example: Binary search tree
class BST:

def __init__(self, value, left, right):
self.value = value
self.left = left
self.right = right

def insert(self, elem):

def to_list(self):

@st.composite
def gen_bsts(draw):

Generate BSTs of integers

Property-based Testing 25 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Invariant check example: BST checker

def check_well_formed(bst):
if bst.left is not None:

assert all(x < bst.value
for x in bst.left.to_list())

check_well_formed(bst.left)
if bst.right is not None:

assert all(x > bst.value
for x in bst.right.to_list())

check_well_formed(bst.right)

Property-based Testing 26 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Invariant check example: BST tests

@given(gen_bsts())
def test_bst_generation_is_valid(bst):

Check generator satisfies invariant
check_well_formed(bst)

@given(gen_bsts(), st.integers())
def test_bst_insert_is_valid(bst, val):

Check insert operation satisfies invariant
bst.insert(val)
check_well_formed(bst)

Property-based Testing 27 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Postcondition checks

▶ For functions or operations on data structures, what about
the result or output is always true?

▶ Extension on sanity checks

Property-based Testing 28 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Postcondition check example: Dictionary durability

@given(st.dictionaries(st.text(), st.text()),
st.text(), st.text())

def test_dict_insert_findable(dictionary, key, value):
If I insert (key, value) into the dictionary, I
should be able to find it again
dictionary[key] = value
assert dictionary[key] == value

Property-based Testing 29 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Postcondition check example: Function check

def gcd(x, y):
Only works on positive numbers

@given(st.integers(min_value=1),
st.integers(min_value=1))

def test_gcd_outputs_common_divisor(x, y):
gcd(x, y) must actually be a common
factor of x and y
g = gcd(x, y)
assert x % g == 0
assert y % g == 0

Property-based Testing 30 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Metamorphic properties

▶ When testing functions, determine what changes in the
output if we mess with the input a bit

Example
Given a list xs, how is the result ys affected when you add an
element x to the front of xs before reversing it?
▶ Increases the number of possibilities for properties to write
▶ Increases the number of ways that counterexamples could pop

up

Property-based Testing 31 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Metamorphic properties

xs

ys

reverse

xs'
add x to front

ys'

reverse

add x to back

Property-based Testing 32 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Metamorphic properties

Code:
@given(st.integers(), st.lists(st.integers()))
def test_prepend_reverse_becomes_append(x, xs):

assert my_reverse([x] + xs) == my_reverse(xs) + [x]

Challenge: Malicious compliance
We could easily break the previous property for defining reverse.
Can you provide a terminating function on lists of integers that
satisfies the above property but doesn’t reverse the list?
1 minute break... You’re 60% of the way through the talk...

Property-based Testing 33 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Coming up with metamorphic properties

A few ideas:
▶ Is there a way to mess with the input such that the output

stays the same?
▶ Is there a way to do two operations in a different order and

end up with similar results?
▶ Is there a way to do an operation and then immediately

undo that operation?
Metamorphic properties can be weak by themselves, but very
powerful when multiple are combined together.

Property-based Testing 34 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Describing behaviour

▶ Combining properties can even be so powerful as to specify
the behaviour for the function entirely.

▶ If we have enough properties that can directly describe the
requirements of the function in all cases, then we have a
specification.

The Oracle Problem (revisited)
Even if we can generate large, high quality test cases, how would
we be able to tell if the code’s output was correct?
What if we checked our code against a simpler implementation?

Property-based Testing 35 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Model-based testing

System: What actually happens
Model: What we expect to happen
▶ Developed by Tony Hoare [2]
▶ The model supports the same functionality as the system,

except perhaps less efficient

Property-based Testing 36 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

System against Model

System Modelabstraction

System Model

perform tests perform tests

abstraction

Property-based Testing 37 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Model-based testing example
Suppose I had a data structure for storing a set of numbers.
class NumberSet:

def __init__(self):

def in_set(self, num):

def insert(self, num):

def remove(self, num):

def to_list(self):
We will use a list of integers as our model.

Property-based Testing 38 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: abstraction and refinement

Define functions to convert to and from the two representations...
Convert from NumberSet to list
def abstract(s):

return s.to_list()

Convert from list to NumberSet
def refine(model):

result = NumberSet()
for i in model:

result.insert(i)
return result

Property-based Testing 39 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Operations

Implement equivalent operations on the model...
def model_in_set(model, num):

return num in model

def model_insert(model, num):
if num not in model:

model.append(num)

def model_remove(model, num):
if num in model:

model.remove(num)

Property-based Testing 40 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Generation strategy

@st.composite
def generate_numbersets(draw):

model = draw(st.lists(st.integers()))
return refine(model)

Property-based Testing 41 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Equivalence

def equiv(model1, model2):
for i in model1:

if i not in model2:
return False

for i in model2:
if i not in model1:

return False
return True

Property-based Testing 42 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Basic properties
@given(generate_numbersets(), st.integers())
def test_insert_matches_model(nset, x):

model = abstract(nset)
nset.insert(x)
model_insert(model, x)
assert equiv(abstract(nset), model)

@given(generate_numbersets(), st.integers())
def test_remove_matches_model(nset, x):

model = abstract(nset)
nset.remove(x)
model_remove(model, x)
assert equiv(abstract(nset), model)

Property-based Testing 43 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Generating operations

For generating inputs, pick random small integers
and random operations
@st.composite
def generate_operation(draw):

update_type = draw(
st.sampled_from(["Check", "Insert", "Remove"])

)
update_value = draw(st.one_of(

st.integers(-50, 50),
st.integers()

))
return (update_type, update_value)

Property-based Testing 44 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Defining a model: Combining many queries

@given(generate_numbersets(), st.lists(generate_operation()))
@settings(verbosity=Verbosity.verbose)
def test_all_operations(nset, ops):

model = abstract(nset)
for op in ops:

if op[0] == "Check":
assert model_in_set(model, op[1]) == nset.in_set(op[1])

elif op[0] == "Insert":
model_insert(model, op[1])
nset.insert(op[1])
assert equiv(abstract(nset), model)

elif op[0] == "Remove":
model_remove(model, op[1])
nset.remove(op[1])
assert equiv(abstract(nset), model)

else:
If we generated operations properly,
we shouldn't get here
assert False

Property-based Testing 45 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Comparison of property design patterns

Property type Min Max Mean
Postcondition 7.1 245 77
Metamorphic 2.4 714 56
Model-based 3.1 9.8 5.8

Figure: Mean number of tests to make a property of each type fail

Source: Hughes [3]

Property-based Testing 46 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Pitfalls

Tempting to use model-based testing for everything
def test_reversing_twice_gives_same_list(xs):

assert my_reverse(xs) == ...

▶ Repeating code is very bad
▶ No simpler way to implement the function you are writing
▶ Use the other techniques instead! Model-based testing cannot

solve everything.

Property-based Testing 47 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Ensuring software safety

▶ Property-based testing is not going to be the only thing that
is used on a project to ensure software safety
▶ Using a language with a type system designed for safety
▶ Formal verification

▶ We will discuss how PBT can complement these other
methods

Property-based Testing 48 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

PBT and safe type systems

▶ Many languages have type systems that can get rid of most of
the bugs before they even get compiled

▶ Can get difficult to encode all of your requirements in types
without complex type hackery

▶ Encoding some of the more complicated ones as PBTs can
greatly reduce complexity
▶ Less bugs in the long run?

Property-based Testing 49 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

PBT in relation to formal verification

Formal verification: Proving the correctness of your code with
rigorous mathematics

“Why do I need property-based tests if I can just prove my
program works?”

▶ What if your proof gets stuck?
▶ Property-based tests provide a good sanity check
▶ Great preparatory step before formal verification

Property-based Testing 50 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

PBT as a black-box testing method

System

Your code

Black box

Closed-source API
Device firmware
Device hardware

□ = Can prove, ■ = Can’t prove

We can test the whole system and even check for potential bugs
from code we didn’t write.

Property-based Testing 51 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Conclusion

Property-based testing presents many advantages
▶ Code can be tested on large numbers of cases per second

▶ One property can replace many individual example tests
▶ Can continually be running tests in the background

▶ Can help people find problems they may have overlooked in
their code/unit tests

▶ More helpful for debugging
▶ More interesting to write, because...
▶ Property-based tests force you to think about how your code

behaves!

Property-based Testing 52 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

References and further readings

The majority of this talk was sourced from these papers:
Koen Claessen and John Hughes.
Quickcheck: a lightweight tool for random testing of haskell programs.
In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000, pages
268–279. ACM, 2000.

C. A. R. Hoare.
Proof of correctness of data representations.
Acta Informatica, 1:271–281, 1972.

John Hughes.
How to specify it! - A guide to writing properties of pure functions.
In William J. Bowman and Ronald Garcia, editors, Trends in Functional Programming - 20th International
Symposium, TFP 2019, Vancouver, BC, Canada, June 12-14, 2019, Revised Selected Papers, volume 12053
of Lecture Notes in Computer Science, pages 58–83. Springer, 2019.

Further resources: https://spdskatr.github.io/misc/pbt

Property-based Testing 53 / 55 CompSci Student Talks

https://spdskatr.github.io/misc/pbt

Introduction How it works Using it well PBT + other methods

Q&A + Challenge solutions?

@given(st.integers(), st.lists(st.integers()))
def test_prepend_reverse_becomes_append(x, xs):

assert my_reverse([x] + xs) == my_reverse(xs) + [x]

Challenge: Malicious compliance
Can you provide a terminating function on lists of integers that
satisfies the above property but doesn’t reverse the list?

Property-based Testing 54 / 55 CompSci Student Talks

Introduction How it works Using it well PBT + other methods

Challenge Solution
Why does this code work?
def my_reverse(x):

return [0] + list(reversed(x))
The property we used does not specify a base case!

Extra extension: Suppose the function my_reverse didn’t just
work with lists of integers.
If my_reverse was parametrically polymorphic i.e. in OCaml:
my_reverse : 'a list -> 'a list
Clearly we can’t just add an integer to the front anymore, since it
won’t type check. Is it still possible to satisfy the property with a
terminating function that doesn’t actually reverse?

Property-based Testing 55 / 55 CompSci Student Talks

	Introduction
	How it works
	Using it well
	PBT + other methods

